

Nori[®] Human OCLN ELISA Kit- DataSheet

Occludin (OCLN) is a protein that in humans is encoded by the OCLN gene.^[1] Occludin is a 65-kDa integral plasmamembrane protein located at the tight junctions, described for the first time in 1993 by Shoichiro Tsukita.^[2] Together with the Claudin group of proteins, it is the main component of the tight junctions. Occludin is important in tight junction stability and barrier function. Studies in which mice were deprived of occludin expression showed morphological stability in several epithelial tissues but also found chronic inflammation and hyperplasia in the gastric epithelium, calcification in the brain, testicular atrophy, loss of cytoplasmic granules in straited duct cells of salivary gland, and thinning of the compact bone. The phenotypical response of these mice to the lack of occludin suggest that the function of occludin is more complex than thought and requires more work.^[3] Occludin plays a critical role in maintaining the barrier properties of a tight junction. Thus, mutation or absence of occludin increases epithelial leakiness which is an important barrier in preventing metastasis of cancer. Loss of occludin or abnormal expression of occludin has been shown to cause increased invasion, reduced adhesion and significantly reduced tight junction function in breast cancer tissues. Furthermore, patients with metastatic disease displayed significantly lower levels of occludin suggesting that the loss of occludin and thereby loss of tight junction integrity is important in metastatic development of breast cancer.^[4] Occludin also plays an important role in the apoptosis. The C-terminus of occludin is important in receiving and transmitting cell survival signals. In standard cells, loss or disruption of occludin and other tight junction proteins leads to initiation of apoptosis through extrinsic pathways.^[5] Studies involving high levels of expression of occludin in cancer cells have shown that occludin mitigates several important cancer proliferation properties. The presence of occludin decreased cellular invasiveness and motility, enhanced cellular sensitivity to apoptogenic factors and lowered tumorigenesis and metastasis of the cancer cells. Specifically, occludin has a strong inhibitory effect on Raf1-induced tumorigenesis. Still, the exact mechanism of how occludin prevents the progression of cancer is not known but it has been shown that cancer progression is linked to the loss of occludin or the silencing of the OCLN gene.^[6]

References

- 1. Ando-Akatsuka Y, et al. (1996). J Cell Biol. 133 (1): 43-47.
- 2. Furuse M, et al. (1993). J. Cell Biol. 123 (6 Pt 2): 1777–1788.
- 3. Saitou M, et al. (2000). Molecular Biology of the Cell. 11 (12): 4131–42.
- 4. Martin TA, et al. (2010). International Journal of Molecular Medicine. 26 (5): 723-34.
- 5. Beeman N, et al. (2012). Cell Death & Disease. 3 (2): e273.
- 6. Osanai M, et al. (2006). Cancer Research. 66 (18): 9125–33.

PRINCIPLE OF THE ASSAY

This ELISA kit is for quantification of OCLN in human samples. This is a shorter ELISA assay that reduces time to 50% compared to the conventional method, and the entire assay only takes 3 hours. This assay employs the quantitative sandwich enzyme immunoassay technique and uses biotin-streptavidin chemistry to improve the performance of the assays. An antibody specific for human OCLN has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any OCLN present is bound by the immobilized antibody. After washing away any unbound substances, a detection antibody specific for human OCLN is added to the wells. Following wash to remove any unbound antibody reagent, a detection reagent is added. After intensive wash a substrate solution is added to the wells and color develops in proportion to the amount of OCLN bound in the initial step. The color development is stopped and the intensity of the color is measured.

This package insert must be read in its entirety before using this product.

Storage Store at 4°C. The kit should be used in 6 months.

Nori[®] Human OCLN ELISA Kit- DataSheet

Description	Quantity	Description	Quantity	Description	Quantity
Antibody Precoated Plate	1	20 x PBS	1	Substrate Solution	1
Detection Antibody	1	20 x Assay Buffer	1	Stop Solution	1
HRP Conjugate	1	96-well plate sheet	1	DataSheet	1
Standard	3				

MATERIALS PROVIDED

Bring all reagents to room temperature before use.

Reagent Preparations

Human OCLN Detection Antibody (1 vial) – The lyophilized Detection Antibody should be stored at 4°C to - 20°C in a manual defrost freezer for up to 6 months, if not used immediately. Centrifuge 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains sufficient Detection Antibody for one 96-well plate. Add 200 μ L of sterile 1 x PBS to the antibody vial, vortex 20 sec and allow it to sit for 5 min prior to use. Take 200 μ L of detection antibody to 10.5 mL of 1 x PBS to make **working dilution of Detection Antibody** and vortex 30 sec if the entire 96-well plate is used. If the partial antibody is used store the rest at -20°C until use.

Human OCLN Standard (3 vials) – Each lyophilized Human OCLN Standard vial contains the standard sufficient for generating a calibration curve. The un-reconstituted standard can be stored at $4^{\circ}C \sim -20^{\circ}C$ for up to 6 months if not used immediately. Centrifuge for 1 min at 6000 x g to bring down the material prior to open the tube. Add 500 µL of 1 x Assay Buffer to a Standard vial to make the high standard concentration of 10 ng/ml and **vortex for 1 min** and allow it to sit for 5 min prior to use. A seven-point standard curve is generated using 2-fold serial dilutions in the Assay Buffer, **vortex 30 sec** for each of dilution step.

HRP Conjugate $(55 \ \mu\text{L})$ – Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains 55 $\ \mu\text{L}$ HRP Conjugate sufficient for one 96-well plate. If the volume is less than 55 $\ \mu\text{L}$, add sterile 1 x PBS to reach 55 $\ \mu\text{L}$ and vortex briefly. Make 1:200 dilution in 1 x PBS. If the entire 96-well plate is used, add 53 $\ \mu\text{L}$ of HRP Conjugate to 10.5 mL of the 1 x PBS to make **working dilution of HRP Conjugate** and vortex 30 sec prior to the assay. The rest of undiluted HRP Conjugate can be stored at 2 - 8°C for up to 3 months. DO NOT FREEZE

20 x PBS, pH 7.3, 25 mL- Dilute to 1 x PBS with deionized distilled water and mix well prior to use.
20 x Assay Buffer, 20 mL- Dilute to 1 x Assay Buffer with 1 x PBS prior to use.
Substrate Solution, 10.5 mL.
Stop Solution, 5.5 mL.

Nori[®] Human OCLN ELISA Kit- DataSheet

Assay Procedure

- 1. All procedures are conducted at room temperature (20-25 °C) and ensure equal pipetting/dispensing at each step and remove air bubbles in the wells for all steps.
- 2. Lift the plate cover and cover the unused wells or reseal the unused strips in the aluminum bag with desiccant at 4 °C. Vortex the standards and samples for 10 sec before applying to the plate. Add 100 µL of sample or standard per well and use duplicate wells for each standard or sample. Cover the 96well plate and incubate on shaker at 450 rpm for 1 h (2 h if no shaking). Attention: MUST vortex standards and samples for 10 sec before pipetting to the wells!
- 3. Aspirate each well and wash with 300 µL of 1 x Assay Buffer for two times. Wash by filling each well with 1 x Assay Buffer using a multi-channel pipette, manifold dispenser, squirt bottle or auto-washer. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Assay Buffer by aspirating or by inverting the plate and blotting it against clean paper towels.
- 4. Add 100 μ L of the working dilution of Detection Antibody to each well. Cover the plate and incubate on shaker at 450rpm for 1 h (2 h if no shaking).
- 5. Repeat the aspiration/wash as in step 3.
- 6. Add 100 µL of the working dilution of HRP Conjugate to each well. Cover the plate and incubate for 20 minutes. Avoid placing the plate in direct light.
- 7. Repeat the aspiration/wash as in step 3 but wash 4 times instead.
- 8. Add 100 µL of Substrate Solution to each well and observe the color development every 1-2 mins. Incubate for up to **30 minutes (depending on signal. Stop** the reaction when it turns to dark blue in the highest standard wells). Over-incubation of the substrate will result in overflow of high standard and should be avoided. Avoid placing the plate in direct light.
- 9. When it gets to dark blue in the highest concentration of standard wells, add 50 uL of Stop Solution to each well to stop the reaction. Gently tap the plate to ensure thorough mixing. Ensure all wells turn vellow by pipette tip prior to measurement.
- 10. Determine the optical density of each well immediately, using a validated microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate.

Sample dilution: If high density is expected, samples should be diluted with equal volume of 1 x Assay Buffer and vortex for 1 min prior to assay. If the OD value still exceeds the upper limit of the standard curve, further dilution is recommended till it falls in the detection range and the dilution factor must be used for calculation of the concentration.

Precaution and Technical Notes

- 1. It is critical to follow the procedure step by step otherwise appropriate color development may not occur as expected and make sure no air bubbles in wells before adding reagents.
- 2. A standard curve should be generated for each set of samples assayed. Thorough mixing of standards at each of dilution steps is critical to acquire a normal standard curve and vortex again (10 sec) before pipetting to the 96-well plate.
- 3. HRP Conjugate contains enzyme, DO NOT mass up with Detection Antibody.
- 4. The Stop Solution is an acid solution, handle with caution.
- 5. This kit should not be used beyond the expiration date on the label.
- A thorough and consistent wash technique is essential for proper assay performance.
 Use a fresh reagent reservoir and pipette tips for each step.
- It is recommended that all standards and samples be assayed in duplicate. 8.
- 9. Avoid microbial contamination of reagents and buffers. This may interfere with the performance of the assay.

Nori[®] Human OCLN ELISA Kit - DataSheet

Calculation of Results

Average the duplicate readings for each standard, control, and sample and subtract the average zero (blank) standard optical density.

Create a standard curve by reducing the data using computer software capable of generating a fourparameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the OCLN concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

The Standard Curve

The graph below represents typical data generated when using this human OCLN ELISA Kit. The correlation coefficient (r^2) is 0.995-1.000. The standard curve should be calculated using a computer generated 4-PL curve-fit to determine concentrations of unknow specimens.

Nori[®] Human OCLN ELISA Kit - DataSheet

Specificity

The following recombinant human proteins prepared at 10 ng/ml were tested and exhibited no cross-reactivity or interference.

Adiponectin, ApoAI, BMP7, CCL2, CRP, HSP27, HGF, IL-1 beta, FGFb, IFNγ, MMP-2, MMP9, IL2R, PDGF, serpin E1, TGFβ1, TLR9, TNF-α, VEGF, VEGF R1.

Calibration

This kit is calibrated against a highly-purified recombinant human OCLN

Detection Range

0.156-10 ng/ml

Assay Sensitivity

30 pg/ml

Assay Precision

Intra-Assay %CV: 6; Inter-Assay %CV: 9

Related products

- 1. GR239031 96-well microplate sealer plastic, pack of 100
- 2. GR238016 50 ml Reagent Reservoir, 100/case, 5 packs/case (pack of 20)
- 3. GR238004 Tissue Culture 96-well Microplate, individually packed, Case of 50
- 4. GR238002 Microplate 12x8-Well Strip High Binding, Case of 50
- 5. GR238003 Microplate 12x8-Well Strip Medium Binding, Case of 50
- 6. GR238032 42592 Costar Stripwell Microplate 1 x 8 Flat Bottom, High Binding, Case of 100
- 7. GR238001 468667 Thermo Microplate 12x8-Well Strip Nunc Maxixorp F8, Case of 60
- 8. GR238019 1.5 ml Microcentrifuge tube with screw cap and free-standing, pack of 500

DECLARATION

THIS REAGENT IS FOR IN VITRO LABORATORY TESTING AND RESEARCH USE ONLY. DO NOT USE IT FOR CLINICAL DIAGNOSTICS. DO NOT USE OR INJECT IT IN HUMANS AND ANIMALS.

FOR LABORATORY RESEARCH USE ONLY NOT FOR USE IN HUMANS AND ANIMALS

Nori[®] Human OCLN ELISA Kit – DataSheet

Troublesho	Troubleshooting Guide				
Problem	Possible causes	Solution			
Poor standard curve	 Inaccurate pipetting Insufficient vortexing OD₄₅₀ too high for the high standard point Air bubbles in wells. Standard defect or not fully recovered 	 Check pipette calibration and ensure equal dispensing. Vortex 30 sec for each of standard dilution steps and vortex again (10 sec) before pipetting to the 96-well plate. Reduce substrate incubation time Remove air bubbles in wells by pipette tip. Change a standard vial or spin down the vial before reconstitution 			
Low signal	 Improper preparation of reagents and storage Too brief incubation times Inadequate reagent volume or improper dilution Standard defect and sample overdiluted 	 Briefly spin down vials before opening. Reconstitute the content thoroughly. Proper storage of plate and strip and detection antibody after first usage as shown in the datasheet. Microplate shaker may improve signals. Ensure sufficient incubation time including substrate incubation. Increase sample incubation to 2 hours. Change a Standard vial. Undilute sample or less dilution 			
Overflow in the standards	Substrate incubation too longAir bubbles in wells	 Observe the color development every 1-2 mins and reduce substrate incubation time. Stop the reaction by adding 50 µl of Stop Solution when it turns to dark blue in the highest concentration of standard wells. Remove air bubbles in wells 			
Large CV	 Inaccurate pipetting and mixing Improper standard/sample dilutions. Air bubbles in wells. Microplate reader out of calibration It did not turn yellow after adding Stop Solution 	 Check pipettes and ensure the pipette is calibrated properly. Ensure accurate pipetting and thorough mixing. Use reverse, instead of forward pipetting. Use the correct dilution buffers Remove air bubbles in wells by pipette tip. Calibrate the microplate reader properly If it did not turn yellow after adding Stop Solution, mix with pipette tip till it turns yellow prior to measurement. 			
High background	 Reagent reservoir issue Plate is insufficiently washed and air bubbles in wells. Contaminated Assay Buffer Pipet tip contaminated 	 Use a new reagent reservoir for Substrate Solution. Increase wash to 4 times before adding substrate and ensure plate washer functions normally. Remove air bubbles in wells by pipette tip. Use squirt bottle for washing. Make fresh Assay Buffer and wash thoroughly. Use new pipette tips for blank wells. 			
No signal detected	 The procedure was misconducted. Failures of spin down the contents in Detection Antibody and Standards. Failure of Substrate or HRP Samples overdiluted 	 Ensure the step-by-step protocol. Spin vials of Detection antibody and Standard to completely recover the content. Mix 100 μl of Substrate with 0.5 μl HRP and dark blue color should develop in 5 min. Try a new standard vial and use positive control. Try not dilute samples 			
Low sensitivity	 Improper dilutions of standards Improper storage of the ELISA kit 	 Ensure accurate and thorough dilutions of standards at each step. Store detection antibody at -20°C after reconstitution and others at 4°C. Keep substrate solution protected from light. 			