Interleukin 17 is a cytokine that acts as a potent mediator in delayed-type reactions by increasing chemokine production in various tissues to recruit monocytes and neutrophils to the site of inflammation. IL-17 is produced by T-helper cells and is induced by IL-23 which results in destructive tissue damage in delayed-type reactions (1). Interleukin 17 as a family functions as a proinflammatory cytokine that responds to the invasion of the immune system by extracellular pathogens and induces destruction of the pathogen's cellular matrix. Interleukin 17 acts synergistically with tumor necrosis factor and interleukin-1 (2). To elicit its functions, IL-17 binds to a type I cell surface receptor called IL-17R of which there are at least three variants IL17RA, IL17RB, and IL17RC (3). The IL-17 family is comprised of at least six proinflammatory cytokines that share a conserved cysteine-knot structure but diverge at the N-terminus. In addition to IL-17A, members of the IL-17 family include IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F. IL-17 family members are glycoproteins secreted as dimers that induce local cytokine production and recruit granulocytes to sites of inflammation. IL-17 is induced by IL-15 and IL-23, mainly in activated CD4+ T cells distinct from Th1 or Th2 cells. IL-17F is the most homologous to IL-17 but is induced only by IL-23 in activated monocytes. IL-17B binds the IL-17B receptor, but not the IL-17 receptor; it is most homologous with IL-17D, which is expressed by resting CD4+ T cells and CD19+ B cells. IL-17E is mainly produced by Th2 cells and recruits eosinophils to lung tissue. IL-17C has a very restricted expression pattern but has been detected in adult prostate and fetal kidney libraries. #### References - 1. Janis, K, et al. (2007). Kuby immunology. San Francisco: W.H. Freeman. pp. 396. - 2. Miossec P, et al. (2009). N. Engl. J. Med. 361 (9): 888. - 3. Starnes T, et al. (2002). J. Immunol. 169 (2): 642. #### PRINCIPLE OF THE ASSAY This kit is for quantification of IL-17A in horse. This is a shorter ELISA assay that reduces time to 50% compared to the conventional method, and the entire assay only takes 3 hours. This assay employs the quantitative sandwich enzyme immunoassay technique and uses biotin-streptavidin chemistry to improve the performance and the sensitivity of the assays. An antibody specific for equine IL-17A has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any IL-17A present is bound by the immobilized antibody. After washing away any unbound substances, a detection antibody specific for equine IL-17A is added to the wells. Following wash to remove any unbound antibody reagent, a detection reagent is added. After intensive wash a substrate solution is added to the wells and color develops in proportion to the amount of IL-17A bound in the initial step. The color development is stopped, and the intensity of the color is measured. This package insert must be read in its entirety before using this product. #### **Storage** Store at 4°C. The kit can be used in 6 months. #### MATERIALS PROVIDED | Description | Quantity | Description | Quantity | Description | Quantity | |--------------------------|----------|-------------------|----------|---------------------|----------| | Antibody Precoated Plate | 1 | 20 x PBS | 1 | Substrate Solution | 1 | | Detection Antibody | 1 | 20 x Assay buffer | 1 | Stop Solution | 1 | | HRP Conjugate | 1 | 20 x BAL Solution | 1 | DataSheet/Manual | 1 | | Standard | 3 | | | 96-well plate sheet | 1 | Bring all reagents to room temperature before use. #### **Reagent Preparations** **Equine IL-17A Detection Antibody**— The lyophilized Detection Antibody should be stored at 4°C or -20°C in a manual defrost freezer for up to 6 months, if not used immediately. Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains sufficient Detection Antibody for a 96-well plate. Add 200 μL of sterile 1 x PBS to the antibody vial, vortex 30 sec and allow it to sit for 5 min. Take 200 μL of detection antibody to 10.5 mL of 1 x PBS to make **working dilution of detection antibody and vortex 30 sec** if the entire 96-well plate is used. If the partial antibody is used store the rest at -20°C until use. Equine IL-17A Standard (3 vials) – Each lyophilized equine IL-17A Standard vial contains the standard sufficient for generating a standard curve. The non-reconstituted standard can be stored at 4°C or -20°C for up to 6 months if not used immediately. Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. Add 500 μ L of 1 x Assay Buffer to a standard vial to make the high standard concentration of 6,000 pg/ml. **Vortex 1 min** and allow it to sit for 5 min prior to use. A seven-point standard curve is generated using 2-fold serial dilutions in the Assay Buffer, **vortex 30** sec for each of dilution steps. HRP Conjugate (55 μ L) – Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains 55 μ L HRP Conjugate sufficient for a 96-well plate. If the volume is less than 55 μ L, add sterile 1 x PBS to reach 55 μ L and vortex briefly. Make 1:200 dilution in 1 x PBS. If the entire 96-well plate is used, add 53 μ L of HRP Conjugate to 10.5 mL of the 1 x PBS to make working dilution of HRP Conjugate and vortex 30 sec prior to the assay. The rest of undiluted HRP Conjugate can be stored at 2 - 8°C for up to 6 months. DO NOT FREEZE 20 x PBS, pH 7.3, 25 mL- Dilute to 1 x PBS with deionized distilled water and mix well prior to use. 20 x Assay buffer, 20 mL- Dilute to 1 x Assay buffer with 1 x PBS prior to use. 20 x BAL Solution, 10 mL- Dilute to 1 x BAL Solution with 1 x PBS prior to use. Substrate Solution, 10.5 mL. Stop Solution, 5.5 mL. #### **Assay Procedure** - 1. All procedures are conducted at room temperature (20-25 °C) and ensure equal pipetting/dispensing at each step and remove air bubbles in the wells for all steps. - 2. Lift the plate cover and cover the unused wells or reseal the unused strips in the aluminum bag with desiccant at 4 °C. Vortex the standards and samples for 10 sec before applying to the plate. Add 100 μL of sample or standard per well and use duplicate wells for each standard or sample. Cover the 96-well plate and incubate for 1 hour. Attention: MUST vortex standards and samples for 10 sec before pipetting to the wells! - 3. Aspirate each well and wash with 300 µL of 1 x Assay Buffer for two times. Wash by filling each well with 1 x Assay Buffer using a multi-channel pipette, manifold dispenser, squirt bottle or auto-washer. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Assay Buffer by aspirating or by inverting the plate and blotting it against clean paper towels. - 4. Add 100 μL of the **working dilution of Detection Antibody** to each well. Cover the plate and incubate for 1 hour. - 5. Repeat the aspiration/wash as in step 3. - 6. Add 100 μL of the **working dilution of HRP Conjugate** to each well. Cover the plate and incubate for 20 minutes. Avoid placing the plate in direct light. - 7. Repeat the aspiration/wash as in step 3 but wash 4 times instead. - 8. Add 100 μL of **Substrate Solution** to each well and observe the color development every 1-2 mins. Incubate for up to **30 minutes** (**depending on signal. Stop** the reaction when it turns to dark blue in the highest standard wells). Over-incubation of the substrate will result in overflow of high standard and thus should be avoided. Avoid placing the plate in direct light. - 9. When it gets to dark blue in the highest concentration of standard wells, add 50 μL of **Stop Solution** to each well to stop the reaction. Gently tap the plate to ensure thorough mixing. - 10. Determine the optical density of each well immediately, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate. #### **Precaution and Technical Notes** - 1. It is critical to follow the procedure step by step otherwise appropriate color development may not occur as expected and make sure no air bubbles in wells before adding reagents. - 2. A standard curve should be generated for each set of samples assayed. Thorough mixing of standards at each of dilution steps is critical to acquire a normal standard curve and vortex again (10 sec) before pipetting to the 96-well plate. - 3. HRP Conjugate contains enzyme, DO NOT mass up with Detection Antibody. - 4. The Stop Solution is an acid solution, handle with caution. - 5. This kit should not be used beyond the expiration date on the label. - 6. A thorough and consistent wash technique is essential for proper assay performance. - 7. Use a fresh reagent reservoir and pipette tips for each step. - 8. It is recommended that all standards and samples be assayed in duplicate. - 9. Avoid microbial contamination of reagents and buffers. This may interfere with the performance of the assay. #### **Calculation of Results** Average the duplicate readings for each standard, control, and sample and subtract the average zero (blank) standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four-parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the IL-17A concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor. #### The Standard Curve The graph below represents typical data generated when using this Equine IL-17A ELISA Kit. The standard curve was calculated using a computer generated 4-PL curve-fit. For this case, a Bio-Rad iMarkTM Microplate Reader and a Microplate Manager 6 Software were used to generate this curve. The correlation coefficient (r²) is 0.999-1.000. ### **Specificity** The following recombinant equine proteins prepared at 10 ng/ml were tested and exhibited no cross-reactivity or interference. BMP4, HGF, IL-1β, IL-1RA, IL-2, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-15, IFNγ, MMP-2, TGFβ1, TLR3, TNF-α, TNF RI, TNF RII, VEGF. #### Calibration This kit is calibrated against a highly purified recombinant equine IL-17A. #### **Detection Range** 94-6000 pg/ml #### **Assay Sensitivity** 18 pg/ml #### **Assay Precision** Intra-Assay %CV: 6; Inter-Assay %CV: 9 #### Treatment of bronchoalveolar lavage for ELISA assay - 1. Add equal volume of 1 x BAL Solution to the bronchoalveolar lavage (BAL); - 2. Sonicate for 20 sec or mix thoroughly by a pipette to release the cytokine and centrifuge for 3 min at 3000 x g to collect supernatant for ELISA assay; If sampled from a patient with lung disease or patient who suffered severe inflammatory condition or medication, a serial dilution of the BAL supernatant with 1 x BAL Solution may be needed for appropriate measurement using Standard Curve generated by the ELISA kit #### Related products - 1. GR239031 96-well microplate sealer plastic, pack of 100 - 2. GR238016 50 ml Reagent Reservoir, 100/case, 5 packs/case (pack of 20) - 3. GR238002 Microplate 12x8-Well Strip High Binding, Case of 50 - 4. GR238003 Microplate 12x8-Well Strip Medium Binding, Case of 50 - 5. GR238032 42592 Costar Stripwell Microplate 1 x 8 Flat Bottom, High Binding, Case of 100 - 6. GR238001 468667 Thermo Microplate 12x8-Well Strip Nunc Maxixorp F8, Case of 60 - 7. GR238004 Tissue Culture 96-well Microplate, individually packed, Case of 50 # FOR LABORATORY RESEARCH USE ONLY NOT FOR USE IN HUMANS AND ANIMALS **Troubleshooting Guide** | Troubleshoo
Problem | Possible causes | Solution | |---------------------------|--|--| | Poor standard curve | Inaccurate pipetting Insufficient vortexing OD₄₅₀ too high for the high standard point Air bubbles in wells. Standard defect or not fully | Check pipette calibration and ensure equal dispensing. Vortex 30 sec for each of standard dilution steps and vortex again (10 sec) before pipetting to the 96-well plate. Reduce substrate incubation time Remove air bubbles in wells by pipette tip. Change a standard vial or spin down the vial before | | Low signal | recovered Improper preparation of reagents and storage Too brief incubation times Inadequate reagent volume or improper dilution Standard defect and sample overdiluted | Briefly spin down vials before opening. Reconstitute the powder thoroughly. Proper storage of plate and strip and detection antibody after first usage as shown in the datasheet. Microplate shaker may improve signals. Ensure sufficient incubation time including substrate incubation. Increase sample incubation to 2 hours. Change a Standard vial. Sample undilute or less dilution | | Overflow in the standards | Substrate incubation too long Air bubbles in wells | Observe the color development every 1-2 mins and reduce substrate incubation time. Stop the reaction by adding 50 µl of Stop Solution when it turns to dark blue in the highest concentration of standard wells. Remove air bubbles in wells | | Large CV | Inaccurate pipetting and mixing Improper standard/sample dilutions. Air bubbles in wells. | Check pipettes and ensure the pipette is calibrated properly. Ensure accurate pipetting and thorough mixing and equal dispensing. Wet tips before pipetting. Use reverse, instead of forward, pipetting. Use the correct dilution buffers Remove air bubbles in wells by pipette tip. | | High
background | Reagent reservoir issue Plate is insufficiently washed and air bubbles in wells. Contaminated Assay Buffer Pipet tip contaminated | Use a new reagent reservoir for Substrate Solution. Increase wash to 4 times before adding substrate and ensure plate washer functions normally. Remove air bubbles in wells by pipette tip. Use squirt bottle for washing. Make fresh Assay Buffer and wash thoroughly. Use new pipette tips for blank wells. | | No signal
detected | The procedure was misconducted. Failures of spin down the contents in Detection Antibody and Standards. Failure of Substrate or HRP Samples overdiluted | Ensure the step-by-step protocol. Spin vials of Detection antibody and Standard to complete recover the content. Mix 100 μl of Substrate with 0.5 μl HRP and deep blue color should develop in 2 min. Try a new standard vial and use positive control. Try not dilute samples | | Low sensitivity | Improper dilutions of standards Improper storage of the ELISA kit | Ensure accurate and thorough dilutions of standards at each step. Store detection antibody at -20°C after reconstitution, others at 4°C. Keep substrate solution protected from light. |