

#### Genorise® Recombinant Human Myeloperoxidase

Catalog Number: GR119202

#### Background

Myeloperoxidase (MPO) is a member of the XPO subfamily of peroxidase that in humans is encoded by the MPO gene on chromosome 17. MPO is most abundantly expressed in neutrophil granulocytes and is a lysosomal protein stored in azurophilic granules of the neutrophil and released into the extracellular space during degranulation.<sup>[1]</sup> It produces hypohalous acids to carry out their antimicrobial activity. It requires heme as a cofactor. Furthermore, it oxidizes tyrosine to tyrosyl radical using hydrogen peroxide as an oxidizing agent.<sup>[2]</sup> Hypochlorous acid and tyrosyl radical are cytotoxic, so they are used by the neutrophil to kill bacteria and other pathogens.<sup>[3]</sup> However, this hypochlorous acid may also cause oxidative damage in host tissue. Moreover, MPO oxidation of apoA-I reduces HDL-mediated inhibition of apoptosis and inflammation.<sup>[4]</sup> In addition, MPO mediates protein nitrosylation and the formation of 3chlorotyrosine and dityrosine crosslinks. Recent studies have reported an association between elevated myeloperoxidase levels and the severity of coronary artery disease.<sup>[5]</sup> And Heslop et al. reported that elevated MPO levels more than doubled might increase the risk for cardiovascular mortality over a 13-year period.<sup>[6]</sup> It has also been suggested that myeloperoxidase plays a significant role in the development of the atherosclerotic lesion and rendering plaques unstable.<sup>[7]</sup> MPO could serve as a sensitive predictor for myocardial infarction in patients presenting with chest pain.<sup>[8]</sup> The 2010 Heslop et al. study reported that measuring both MPO and CRP provided added benefit for risk prediction than just measuring CRP alone.<sup>[6]</sup>

#### References

- 1. Kinkade JM, et al. (1983). Biochem Biophys Res Communications. 114 (1): 296–303.
- 2. Heinecke JW, et al. (1993). The Journal of Clinical Investigation. 91 (6): 2866–72.
- 3. Hampton MB, et al. (1998). Blood. 92 (9): 3007–17.
- 4. Shao B, et al. (2010). Chemical Research in Toxicology. 23 (3): 447-54.
- 5. Zhang R, et al. (2001). JAMA. 286 (17): 2136–42.
- 6. Heslop CL, e tal. (2010). J American College of Cardiology. 55 (11): 1102-9.
- 7. Nicholls SJ, et al. (2005). Arteriosclerosis, Thrombosis and Vascular Bio. 25: 1102–11.
- 8. Brennan ML, et al. (2003). The New England Journal of Medicine. 349 (17): 1595-604.

# Genorise

## Genorise® Recombinant Human Myeloperoxidase

Catalog Number: GR1119202

#### Description

Size: 10 μg Source: *E coli* derived Component: Met 251-Asp 566 Accession # P05164 Predicted Molecular Mass: 35 kDa (monomer)

Specifications

**SDS-PAGE:** 35 kDa, reducing conditions **Purity:** >97%, by SDSPAGE under reducing conditions and visualized by silver stain. **Formulation:** Lyophilized from a 0.2 μm filtered PBS with BSA as a carrier protein.

#### **Preparation and Storage**

**Reconstitution:** Reconstitute at 100 µg/mL in sterile PBS.

**Shipping:** The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage: Use a manual defrost freezer and avoid repeated freeze thaw cycles.

- 6 months from date of receipt, -20 to -70°C as supplied.
- 3 months, -20 to -70°C under sterile conditions after reconstitution.

### DECLARATION

THIS REAGENT IS FOR IN VITRO LABORATORY TESTING AND RESEARCH USE ONLY. DO NOT USE IT FOR CLINICAL DIAGNOSTICS. DO NOT USE OR INJECT IT IN HUMANS AND ANIMALS.

## FOR LABORATORY RESEARCH USE ONLY NOT FOR USE IN MOUSES AND ANIMALS