

Recombinant Human NOX2

Catalog Number: GR119034

Background

NADPH oxidase 2 (Nox2), also known as cytochrome b(558) subunit beta or Cytochrome b-245 heavy chain, is a protein that in humans is encoded by the NOX2 gene (also called CYBB gene).^[1] The protein is a super-oxide generating enzyme which forms reactive oxygen species (ROS). Nox2 is composed of cytochrome b alpha (CYBA) and beta (CYBB) chain and contains an N-terminal transmembrane domain that binds two heme groups, and a C-terminal domain that is able to bind to FAD and NADPH.^[2] Nox2 is the catalytic, membrane-bound subunit of NADPH oxidase. It is inactive until it binds to the membrane-anchored p22phox, forming the heterodimer known as flavocytochrome b558.^[3] After activation, the regulatory subunits p67phox, p47phox, p40phox and a GTPase, typically Rac, are recruited to the complex to form NADPH oxidase on the plasma membrane or phagosomal membrane.^[4] Nox2 may play an important role in atherosclerotic lesion development in the aortic arch, thoracic, and abdominal aorta.^{[5][6]} Nox2 may play a role in determining the size of a myocardial infarction due to its connection to ROS, which play a role in myocardial reperfusion injury. This was a result of the relation between Nox2 and signaling necessary for neutrophil recruitment.^[7] Furthermore, it increases global post-reperfusion oxidative stress, likely due to

decreased STAT3 and Erk phosphorylation.^[7] In addition, it appears that hippocampal oxidative stress is increased in septic animals due to the actions of Nox2.^[8] Nox2 may also plays an important role in angiotensin II-mediated inward remodelling in cerebral arterioles due to the emittance of superoxides from Nox2-containing NADPH oxidases.^[9] CYBB transcript levels are upregulated in the lung parenchyma of smokers. ^[10]

References

- 1. Royer-Pokora, B., et al. (1986) Nature 322 (6074), 32-38.
- 2. Aguirre, Jesús; Lambeth, J (2010). Free Radical Biology and Medicine. 49 (9): 1342-1353.
- 3. Hervé C, et al. (2006). Current Genetics. 49(3): 190–204.
- 4. Kawahara T, Lambeth JD (2007). BMC Evolutionary Biology. 7: 178.
- 5. Sorescu, D; et al. (2002). Circulation. 105 (12): 1429–35.
- 6. Chaubey, S; et al. (2013). PLOS ONE. 8 (2): e54869. doi:10.1371/journal.pone.0054869.
- 7. Braunersreuther V, et al. (2013). Journal of Molecular and Cellular Cardiology. 64: 99–107.
- 8. Hernandes MS, et al. (2014). J Neuroinflammation. 11 (1): 36. doi:10.1186/1742-2094-11-36.
- 9. Chan SL, Baumbach GL (2013). Frontiers in Physiology. 4: 133.
- 10. Pintarelli G, et al. (2019). Scientific Reports. 9 (1): 13039. doi:10.1038/s41598-019-49648-2.

Recombinant Human NOX2

Catalog Number: GR119034

Description

<u>Size</u>: 5 µg

Sources: Expressed in E. coli.

Composition: Ser475-Phe570

<u>Accession</u> #: NP_000388.2

Molecular weight: 26 kDa (including his tags and partial plasmid vector sequences)

<u>Activity</u>: Not tested. <u>Endotoxin level</u>: Not tested.

<u>Purity</u>: > 98%, by SDS-PAGE under reducing conditions and visualized by silver staining.

Formulation: Lyophilized from a 0.2 µm filtered solution in PBS with BSA as a carrier protein.

<u>Reconstitution</u>: Reconstitute at 50-200 μ g/ml in sterile PBS and store at -20 °C ~ -70 °C for up to

3 months.

Shipping and storage: The product is shipped at ambient temperature or with ice pad. Upon

receipt, store it immediately at -20 °C to avoid loss of activity and use it in 6 months.

DECLARATION

THIS REAGENT IS FOR IN VITRO LABORATORY TESTING AND RESEARCH USE ONLY. DO NOT USE IT FOR CLINICAL DIAGNOSTICS. DO NOT USE OR INJECT IT IN HUMANS AND ANIMALS.

FOR LABORATORY RESEARCH USE ONLY NOT FOR USE IN HUMANS AND ANIMALS