C-reactive protein (CRP) is a protein found in the blood, the levels of which rise in response to inflammation (i.e. CRP is an acute-phase protein). CRP was first identified as a substance in the serum of patients with acute inflammation that reacted with the C-polysaccharide of Pneumococcus. Its physiological role is to bind to phosphocholine expressed on the surface of dead or dying cells (and some types of bacteria) in order to activate the complement system via the C1Q complex.^[1] CRP is synthesized by the liver^[2] in response to factors released by macrophages and fat cells (adipocytes).^[3] It is a member of the pentraxin family of proteins.^[2] C-reactive protein was the first pattern recognition receptor (PRR) to be identified.^[4] CRP rises up to 50,000-fold in acute inflammation, such as infection. It rises above normal limits within 6 hours, and peaks at 48 hours. Its half-life is constant, and therefore its level is mainly determined by the rate of production (and hence the severity of the precipitating cause). CRP is used mainly as a marker of inflammation and infection. Measuring CRP level is a screen for infectious and inflammatory diseases. Rapid, marked increases in CRP occur with inflammation, infection, trauma and tissue necrosis, malignancies, and autoimmune disorders. Because there are a large number of disparate conditions that can increase CRP production, an elevated CRP level does not diagnose a specific disease. An elevated CRP level can provide support for the presence of an inflammatory disease, such as rheumatoid arthritis, polymyalgia rheumatica or giant-cell arteritis. However, CRP level is an independent risk factor for atherosclerotic disease. Patients with high CRP concentrations are more likely to develop stroke, myocardial infarction, and severe peripheral vascular disease. [5] #### Reference - 1. Thompson D, Pepys MB, Wood SP (1999). Structure 7 (2): 169–77 - 2. Pepys MB, Hirschfield GM (June 2003). J. Clin. Invest. 111 (12): 1805–12. - 3. Lau DC, Dhillon B, Yan H, et al. (May 2005). Am. J. Physiol. Heart Circ. Physiol. 288 (5): H2031-41. - 4. Mantovani A, Garlanda C, Doni A, Bottazzi B (January 2008). J. Clin. Immunol. 28 (1): 1-13. - 5. Clearfield MB (2005). The Journal of the American Osteopathic Association 105 (9): 409–16. #### PRINCIPLE OF THE ASSAY This is a shorter ELISA assay that reduces time to 50% compared to the conventional method, and the entire assay only takes 3 hours. This assay employs the quantitative sandwich enzymelinked immunoassay technique and uses biotin-streptavidin chemistry to improve the performance and the sensitivity of the assays. An antibody specific for CRP has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any CRP present is bound by the immobilized antibody. After washing away any unbound substances, a detection antibody specific for CRP is added to the wells. Following wash to remove any unbound antibody reagent, a detection reagent is added. After intensive wash a substrate solution is added to the wells and color develops in proportion to the amount of CRP bound in the initial step. The color development is stopped and the intensity of the color is measured. This package insert must be read in its entirety before using this product. #### Storage Store at 4°C. The kit can be used in 6 months. #### MATERIALS PROVIDED | Description | Quantity | Description | Quantity | Description | Quantity | |--------------------------|----------|-------------------|----------|---------------------|----------| | Antibody Precoated Plate | 1 | 20 x PBS | 1 | Substrate Solution | 1 | | Detection Antibody | 1 | 20 x Assay Buffer | 1 | Stop Solution | 1 | | HRP Conjugate | 1 | MSDS | 1 | DataSheet/Manual | 1 | | Standard | 3 | | | 96-well plate sheet | 1 | Bring all reagents to room temperature before use. #### **Reagent Preparations** Equine CRP Detection Antibody (1 vial) – The lyophilized Detection Antibody should be stored at 4°C for up to 12 months, if not used immediately. Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains sufficient Detection Antibody for a 96-well plate. Add 200 μ L of sterile 1 x PBS and vortex 30 sec. If the entire 96-well plate is used, take 200 μ L of detection antibody to 10.5 mL of 1 x PBS to make **Working dilution of detection antibody** and vortex 30 sec prior to the assay. If the partial antibody is used store the rest at -20 °C until use. Equine CRP Standard (3 vials) – Each of the lyophilized Equine CRP Standard vial contains the standard sufficient for generating a standard curve. The unreconstituted standard can be stored at 4°C for up to 12 months if not used immediately. Centrifuge for 1 min at 6000 x g to bring down the material prior to open the tube. Add 500 μ L of 1 x Assay Buffer to make the high standard concentration of 1200 pg/ml and vortex for 1 min. A seven-point standard curve is generated using 2-fold serial dilutions in the Assay Buffer, vortex 30 sec for each of dilution step. HRP Conjugate (55 μ l) – Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains 55 μ L HRP Conjugate sufficient for one 96-well plate. If the volume is less than 55 μ L, add sterile 1 x PBS to reach 55 μ L and vortex 10 sec. Make 1:200 dilutions in 1 x PBS. If the entire 96-well plate is used, add 53 μ L of HRP Conjugate to 10.5 mL of 1 x PBS to make working dilution of HRP Conjugate and vortex 30 sec prior to the assay. The rest of undiluted HRP Conjugate can be stored at 4 °C for up to 12 months. DO NOT FREEZE. 20 x PBS, pH 7.3, 25 mL- Dilute to 1 x PBS with deionized distilled water and mix well prior to use. 20 x Assay Buffer, 20 mL- Dilute to 1 x Assay Buffer with 1 x PBS prior to use. Substrate Solution, 10.5 mL. Stop Solution, 5.5 mL. #### **Assay Procedure** - 1. All procedures are conducted at room temperature (20-25 °C) and ensure equal pipetting/dispensing at each step and remove air bubbles in the wells for all steps. - 2. Lift the plate cover from the top left and cover the wells that are not used. Vortex the standards and samples for 10 sec before applying to the plate. Add 100 μL of diluted sample (see below) or standard per well and use duplicate wells for each standard or sample and remove air bubbles in the wells. Cover the 96-well plate and incubate for 2 hours. Attention: MUST vortex standards and samples for 10 sec before pipetting to the wells! - 3. Aspirate each well and wash with 300 µL of 1 x Assay Buffer for two times. Wash by filling each well with 1 x Assay Buffer using a multi-channel pipette, manifold dispenser or autowasher. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Assay Buffer by aspirating or by inverting the plate and blotting it against clean paper towels. Remove bubbles in the wells. - 4. Add 100 μL of the **working dilution of Detection Antibody** to each well. Cover the plate and incubate for 1 hour. - 5. Repeat the aspiration/wash as in step 3. - 6. Add 100 μL of the **working dilution of HRP Conjugate** to each well and remove air bubbles in wells. Cover the plate and incubate for 20 minutes. Avoid placing the plate in direct light. - 7. Repeat the aspiration/wash as in step 3 but wash 4 times instead. - 8. Add 100 μL of Substrate Solution to each well and observe the color development every 1-2 mins and remove bubbles in the wells. Incubate for up to 30 minutes (depending on signal. Stop the reaction when it turns to dark blue in the highest standard wells) and remove bubbles in the wells. Over-incubation of the substrate will result in overflow of high standard and thus should be avoided. Avoid placing the plate in direct light. - 9. When it gets to dark blue in the highest concentration of standard wells, add 50 μL of **Stop Solution** to each well to stop the reaction and remove bubbles in the wells. Gently tap the plate to ensure thorough mixing. - 10. Determine the optical density of each well immediately, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate. Sample dilution: If high density is expected, samples should be diluted with one volume of 1 x Assay Buffer and vortex for 1 min prior to assay. If the OD value still exceeds the upper limit of the standard curve, further dilution is recommended till it falls in the detection range and the dilution factor must be used for calculation of the concentration. #### **Precaution and Technical Notes** - 1. It is critical to follow the procedure step by step otherwise appropriate color development may not occur as expected and make sure no air bubbles in wells before adding reagents. - 2. A standard curve should be generated for each set of samples assayed. Thorough mixing of standards at each of dilution steps is critical to acquire a normal standard curve and **vortex again (10 sec) before pipetting to the 96-well plate**. - 3. HRP Conjugate contains enzyme, DO NOT mass up with Detection Antibody. - 4. The Stop Solution is an acid solution, handle with caution. - 5. This kit should not be used beyond the expiration date on the label. - 6. A thorough and consistent wash technique is essential for proper assay performance. - 7. Use a fresh reagent reservoir and pipette tips for each step. - 8. It is recommended that all standards and samples be assayed in duplicate. - 9. Avoid microbial contamination of reagents and buffers. This may interfere with the performance of the assay. #### **Calculation of Results** Average the duplicate readings for each standard, control, and sample and subtract the average zero (blank) standard optical density. Create a standard curve by reducing the data using computer software capable of generating a four-parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the CRP concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor. #### The Standard Curve The graph below represents typical data generated when using this Equine CRP ELISA Kit. The standard curve was calculated using a computer generated 4-PL curve-fit. For this case, a Bio-Rad iMarkTM Microplate Reader and a Microplate Manager 6 Software were used to generate this curve. The correlation coefficient (r²) is 0.999-1.000. ### **Specificity** The following recombinant equine proteins prepared at 10 ng/ml were tested and exhibited no cross-reactivity or interference. BMP1, HGF, IL-1β, IL-13, IL-15, IFNγ, MMP-2, TGFβ1, TLR3, TNF-α, VEGF. #### Calibration This kit is calibrated against equine CRP. ## **Detection Range** 18-1,200 pg/ml #### **Assay Sensitivity** 3 pg/ml #### **Assay Precision** Intra-Assay %CV: 6; Inter-Assay %CV: 9 ## **Related products** Equine CRP Standard Equine CRP detection antibody #### **DECLARATION** THIS REAGENT IS FOR IN VITRO LABORATORY TESTING AND RESEARCH USE ONLY. DO NOT USE IT FOR CLINICAL DIAGNOSTICS. DO NOT USE OR INJECT IT IN HUMANS AND ANIMALS. # FOR LABORATORY RESEARCH USE ONLY NOT FOR USE IN HUMANS AND ANIMALS Troubleshooting Guide | Troubleshoot | | | |---------------------------|--|--| | Problem | Possible causes | Solution | | Poor standard
curve | Inaccurate pipetting Insufficient vortexing OD₄₅₀ too high for the high standard point Air bubbles in wells. | Check pipettes and ensure equal dispensing. Vortex 30 sec for each of standard dilution steps and vortex again (10 sec) before pipetting to the 96-well plate. Reduce substrate incubation time Remove air bubbles in wells by pipette tip. | | Low signal | Improper preparation of
reagents and storage Too brief incubation times Inadequate reagent volume or
improper dilution Standard defect | Briefly spin down vials before opening. Reconstitute the powder thoroughly. Proper storage of plate and strip and detection antibody after first usage as shown in the datasheet. Ensure sufficient incubation time including substrate incubation. Increase sample incubation to 2 hours. Change a Standard vial. | | Overflow in the standards | Substrate incubation too long Air bubbles in wells | Observe the color development every 1-2 mins and reduce substrate incubation time. Stop the reaction by adding 50 µl of Stop Solution when it turns to dark blue in the highest concentration of standard wells. Remove air bubbles in wells | | Large CV | Inaccurate pipetting and mixing Improper standard/sample dilutions. Air bubbles in wells. | Check pipettes and ensure accurate pipetting and thorough mixing and equal dispensing. Use the correct dilution buffers Remove air bubbles in wells by pipette tip. | | High
background | Reagent reservoir issue Plate is insufficiently washed and air bubbles in wells. Contaminated wash buffer Pipet tip contaminated | Use a new reagent reservoir for Substrate Solution. Increase wash to 4 times before adding substrate and ensure plate washer functions normally. Remove air bubbles in wells by pipette tip. Make fresh wash buffer and wash thoroughly. Use new pipette tips for blank wells. | | No signal
detected | The procedure was misconducted. Failures of spin down the contents in Detection Antibody and Standards. Failure of Substrate or HRP Samples overdiluted | Ensure the step-by-step protocol. Spin vials of Detection antibody and Standard to complete recover the content. Mix 100 μl of Substrate with 0.5 μl HRP and deep blue color should develop in 2 min. Try a new standard vial and use positive control. Try not dilute samples | | Low sensitivity | Improper dilutions of
standards Improper storage of the
ELISA kit | Ensure accurate and thorough dilutions of standards at each step. Store detection antibody at -20°C after reconstitution, others at 4°C. Keep substrate solution protected from light. |